Optimization and Biomechanics for Human Centred Robotics KIT BioRobotics Lab

Prof. Dr. Katja Mombaur

Endowed Chair by Hector Foundation II Institute for Anthropomatics and Robotics (IAR)

Master's Thesis: Implementation and investigation of robotic assistance strategies for helping people stand up and sit down.

Supervisor: Marko Ackermann (marko.ackermann@kit.edu)

Background

Standing up and sitting down are important daily living activities. Difficulties in performing these tasks, which affect particularly older adults, can impact quality of life (Riley et al., 1991; Jeyasurya et al., 2013). Robotic rollators and other robotic devices can help people stand up and sit down, but the best assistance strategies are still unknown (Geravand et al., 2023).

Scope of the thesis

The thesis focuses on the investigation of different assistance strategies to help people stand up and sit down using a robotic assistance simulator (center and right of figure below). Each of the two robots has instrumented handle, whose motion is controlled by two motors. You will implement and test force- and/or impedance-control strategies to help people stand up and sit down, using the available actuators and sensors, and a Simulink control framework. The work involves some hardware implementation and programming in Simulink/Matlab.

force plates

assistance strategy

Required knowledge

This thesis requires basic knowledge in robotic hardware and control theory. Previous programming experience in Matlab/Simulink is desired but not obligatory.

References

P. O. Riley et al., "Mechanics of constrained chair-rise," Journal of Biomechanics, 24, 1991,77–85.

J. Jeyasurya et al., "Comparison of seat, waist, and arm sit-to-stand assistance modalities in elderly population," Journal of Rehabilitation Research and Development, 50, 2013, 835-844.

M. Geravand et al., "A Survey on Rollator-Type Mobility Assistance Robots," in Handbook of Human-Machine Systems, Ed. John Wiley & Sons, 2023, 165-179.